The Role of Biotechnology in Sustainable Agriculture

Akshay Aribindi

12/02/2024

The Role of Biotechnology in Sustainable Agriculture

Agricultural practices directly intersect with the impending extinction of mankind on the planet and environmental conservation. The world population is expected to exceed 9.7 billion by 2050. The demand for food and fiber and other bio-based resources will surge (FAO 2023). However, traditional systems of agriculture are fundamentally under increasing threats of soil erosion, loss of biodiversity, and climate change, all of which threaten productivity and the fragile equilibrium of the ecosystem. In this respect, the problem of sustainable agriculture, which is defined as 'the use of resources in a manner that meets the needs of the current generation without compromising the ability of future generations to meet their needs,' is becoming crucial to global policies and investigations (Tilman et al. 2011, "Agriculture, Ecosystems and Environment").

Winterbottom (2023) has reported that sustainability prospects have emerged in the use of modern biotechnology and biotechnological tools. As biotechnology alters biological and genetic systems (Qaim, 2020), it can foster the production of crops and other agricultural products that are highly productive, more efficient in resource use, and environmentally sustainable. Genetic modification, tissue culture, molecular markers, and CRISPR gene editing of organisms can raise agricultural productivity and simultaneously reduce fertilizer use, greenhouse gas emissions, and mitigate climate change. Alongside the advantages, the use of biotechnology in agriculture has some ethical, ecological, and socio-economic challenges that need to be resolved.

This paper discusses the multilayered pathways through which biotechnology can achieve sustainable development in agriculture by increasing productivity and preserving ecosystems, and fostering social justice. The paper additionally claims that when used appropriately, biotechnology is central to achieving long-term food security and ecological balance. The Vision of Sustainable Agriculture

The Idea of Sustainable Agriculture

Sustainable agriculture is like an art form; it combines environmental stewardship with economic well-being and social equity in farming systems. It is aimed at meeting the food and fiber needs of society today, while safeguarding the ecology for the future (Pretty, 2018). Traditionally, most people viewed sustainability in agriculture as a practice of conservation agriculture and organic farming. Today, however, this has changed, and it is now recognized that a system can be ecologically sound and technologically smart at the same time.

Looking after waste, where redundancies, loss of crossbreeding, population, and quality of soil, loss of biodiversity, and all forms of water pollution are negative externalities, maintaining functional water cycles, emission sinks, and lowering the overall national emissions balance, more water vapour above the national territory than what evaporates is added, becomes more elusive and national emissions balance more of a deficit. Farming practices that are chemical-dependent, modularized, and devastate the ecosystems and greatly monoculture under increased atmospheric carbon, the status of all biomes, ecosystems, and the globe under the business-as-usual scenario, convert the moon into the earth by 2060 (Foley et al, 2011). It is prudent to observe that, in the context of retained ecologic productivity in the adverse scenario, it is fully preserved under proactive strategies of advancement, and witnessing the policy of growth is sustainable.

The above-described situation is where sustainable agriculture, capturing the net benefits of low prices from elastic outcomes of uri-d and uhate, sustaining and monetizing farmers, is more sustainable. Supporting the country's rural habitation whilst positive externalities of biotechnologies, precision agri-tech, and the gentle farming movement, outside the agroecosystem services, pay to disengage (Pretty, 2018).

The adequate equitable distribution of harms to all and the absence of subsidy, Debt farmers in Denmark with biotechnologies pay to promote sustainable development, where there is an underweight in the normative, are some of the practices within the sustainable development framework (Altieri & Nicholls, 2020). Agriculture and the system of interplay serve as the backbone of the economy and the eventual frame of the entire nation's currency traded as the dominant currency, as the dominants in funds of the realm.

Biotechnology and Its Applications in Agriculture

Biotechnology in agriculture means the application of biological systems and living organisms at the cellular and molecular level with the aim of enhancing crop productivity, pest resistance, and sustainability. It includes genetic engineering, marker-assisted breeding, tissue culture, and the application of modern techniques like CRISPR Cas 9 genome editing (Tester and Langridge 2010). These technologies provide researchers the ability to transfer desirable traits, in particular drought and pest resistance, between organisms, which is impossible within the confines of traditional breeding.

Agricultural biotechnology development stemmed from the need to enhance productivity and reduce environmental damage. With the Green Revolution in the middle of the 20th century, food productivity sharply increased while the use of chemicals and degradation of the environment increased in parallel. Biotechnology provides for the second revolution—the precision, efficiency, and sustainable biotechnology revolution, the so-called gene revolution (Qaim 2020).

Biotechnology tools today are utilised in many ways. Modification or Changes to the genetic code of some crops result in the development of some crops that have been genetically modified, such as Bt cotton and Golden Rice. But cotton derivative crops and cultivars produce

proteins from Bacillus thuringiensis, which are toxic to some species of insects, and hence usable in insecticide formulation. Furthermore, Golden Rice is produced in order to synthesize beta carotene, which tackles vitamin A deficiency, particularly in the developing world (Paine et al., 2005). In addition to the crops themselves, biotechnology also improves the mechanics of breeding by utilizing molecular marker-assisted selection, which improves breeding by selecting specific DNA markers associated with desirable characteristics. Additionally, tissue culture enables the rapid production of disease-free plantlets. The molecular technology known as CRISPR-Cas9 has improved the ability to genetically modify crops by directly targeting specific instabilities in the genome that are associated with drought, salinity, and extreme temperatures (Jaganathan et al., 2018).

There is the potential of biotechnology to revolutionize the field of agriculture. However, it is critiqued for the lack of ethical consideration and the regulations in place. Public concerns of genetic contamination, loss of biodiversity, and the monopoly of corporations on the patents of seeds increase public doubt (Lynch & Vogel, 2001). Therefore, it is also important to be responsible for the governance of biotechnology. There also has to be public interaction and transparency to show that the purpose of biotechnology is to aid and not go against development, which is sustainable. In the right hands, biotechnology can be beneficial for agriculture in a more scientific and social way.

Enhancing the Productivity and Yield of Crops

The current global population suggests a heightened demand for food. This renders the practice of agriculture a complex endeavor, given the auxiliary resources available. Breaking the stagnation in agricultural productivity and ecological restraints is of utmost importance. Over the

last twenty years, biotechnology has remained one of the most significant contributors to improved agricultural productivity. Such is the case with improvements in genetic engineering, marker-assisted selection, and genome editing (Ray et al. 2013).

Biotechnology's advancements improve the ability of plants to capture sunlight and utilize scarce resources, such as water and soil nutrients, more effectively. Such is the case with the engineering of the pathways of photosynthetic metabolism, specifically the enhancement of the photosynthetic pathway for carbon net assimilation, which ultimately augments plant growth. Maize plants possessing the ZmM28 gene are prime examples of yield-maximizing technologies, as they exhibit increased biomass accumulation (Wu et al. 2019). Rubisco is arguably one of the most important enzymes in leaves. It is the primary enzyme responsible for fixing carbon dioxide. His improvement regarding enzymes for increased productivity and better plant growth is a promising postulate in agricultural productivity (Parry et al. 2013).

Apart from photosynthesis, biotechnology has enhanced nutrient use efficiency (NUE), an important attribute for sustainable crop production. The use of nitrogen fertilizers in conventional agriculture has resulted in widespread water eutrophication and the emission of greenhouse gases. Transgenic crops expressing nitrogen assimilation genes, such as transporters of nitrate and glutamine synthetase, take up more nitrogen and reduce the need for fertilizers (Li et al, 2016). This not only enhances yield but also reduces the negative environmental impacts of fertilizer use.

Strategic innovations in biotechnology include the 'Bt' cotton, which has reduced pest damage and the use of chemical 'Bt' cotton by incorporating insecticidal proteins from the bacterium ___Bacillus thuringiensis___ and the associated decrease in anabolic antibiotic administration by the other 'Golden Rice' which improves nutritional value of rice by increased beta-carotene (Paine et al, 2005). There is also the ability of the CRISPR-Cas9 system to alter and

engineer genes that control yield traits associated with productivity, and so the improvement of cultivars is greatly expedited.

Biotechnology has redirected the focus of production systems from more inputs to valueadded production with lower inputs. This has been made possible through nutrient management, advanced targeted pest management, and intense biotechnology for enhanced photosynthesis. Biotechnology serves as a pillar to sustainable productivity economically and environmentally.

Biotechnology for Environmental Sustainability

The reduction of agricultural impact on the environment is a critical element of sustainable agriculture. The traditional farming system with high input of agrochemicals has caused severe soil degradation, biodiversity reduction, water pollution, and bioprocess disruption. The adoption of biotechnological farming practices can help alleviate these problems of farming by incorporating ecologically balanced systems (Foley et al., 2011).

Reduction of input of various chemicals is one of the biotechnology advances on the environment, and is available with the use of resistant cultivars for disease and pest problems. Pesticide application and subsequent biotic and abiotic ecosystem pollution have been reduced by the commercial application of genetically modified Bt cotton and Bt maize (Qaim, 2020). These crops produce Bt-toxin, which targets only specific pests and suppresses beneficial insects with no impact on the soil microbiome. According to research conducted by Brookes and Barfoot, the implementation of Bt crops has enabled farmers to reduce their usage of insecticides by nearly 50 percent, thus preserving the quality of water and soil (2018). The benefit of enhanced biodiversity offered by biotech crops and cultivars also includes the Hawaiian-developed Rainbow Papaya, which was introduced to curb damage caused by the Papaya Ringspot Virus (Gonsalves, 2014).

Biotechnology also contributes to the other aspects of soil, such as the cycling and maintenance of the soil nutrients with biofertilizers and soil microbial inoculants (nitrogen and phosphorus enriched). By suppressing beneficial root colonization, through genetic engineering, microorganisms that modify soil organic matter and attack the soil and plant pathogenic microorganisms may be used. These biostimulants derived from biotechnological processes reduce the need for synthetic chemical fertilizers and pesticides, thus encouraging the bio-sustainable agriculture practice.

Farming further uses biotechnology, which has the potential to help with global warming and aid in carbon dioxide capture and storage. Carbon in the atmosphere can be reduced through the use of crops with additional root systems or higher lignin content that can be grown in soil and increase carbon storage (Lal, 2018). Land and soil productivity are preserved under drought and salinity conditions with genetically modified plants that can tolerate these conditions, thus reducing the degradation of land and soil.

In addition, Rockström and others (2017) show how biotechnology enhances biodiversity through the need for increased sustainable land productivity and decreased spatial habitat alteration. Biotechnological advancements help reduce the widening of agricultural spaces, which converts natural ecosystems to agricultural land, thus helping safeguard wildlife and forests.

Available research relating to the Effects of Climate Change on Biotechnology

The societal value of biological resources harnessed through scientific research and engineering is biotechnology. The ability to create innovative solutions in biotechnology is the other side of the coin towards the problem of climate change, which involves increased food production and worsening hunger.

The advances in biotechnology developed to address the complex challenges of drought, salinity, extreme temperatures, and other abiotic stressors in crops represent a major innovation in mitigating the problems of climate change. There is a crop gene biotechnical engineering system designed to construct modified crops that express osmoregulation genes, balancing stress and stabilizing photosynthesis in response to geological and atmospheric conditions (Mazhar et al., 2018). The research aimed to improve engineered maize and enhance irrigation use, resulting in a 20% oversubscription, for drought-prone, lower-yielding crops, spearheaded by Ma Xie et al. (Rogers, 2019).

To this day, farming technologies have enhanced the understanding of plant responses to stress, which has also helped refine the types of interventions used (Jaganathan et al., 2018). Plant breeding is now simplified due to precise gene-editing technologies, such as marker-assisted selection (MAS) and CRISPR, which target specific stress-resistance genes. The CRISPR-Cas9 gene editing technique, which was used to edit OsRR22 and improve salt tolerance in rice without yield penalties (Zhang et al., 2019), is an example of such a technique.

Other than improving genetics, biotechnology addresses climate resilience with land-use practices that enhance sustainability. Crops designed with biotechnology that need a reduction in inputs, due to not utilizing greenhouse emissions, bioengineered crops lower emissions caused by fertilizers and pesticides. Switchgrass and Miscanthus biofuels crops with higher biomass yields also contribute to the renewable energy sources that replace the use of fossil fuels (Lal, 2018).

There is, of course, the need to balance the ever-growing climate resilient investment with policies that guide the practice and address the farmer-oriented needs. There is a significant gap in the genetic engineering of crops in a developing, untouched area, such as rural regions of the world.

These gaps can be resolved with global collaboration, which also solves the ethical issue of disposable climate biotechnology.

It can be seen that biotechnology has the potential to enhance the climate-stressed productivity of agriculture and, therefore, is a center of focus and a tool for development. This creates a larger gap in the sustainability-forward world as it undermines climate change.

Social, Economic, and Ethical Considerations

Biotechnology has enduring implications that can sustainably transform agriculture. However, such potential has given rise to socio-ethical and political discussions. Within the socio-ethical and political discussions, the socio-ethical matters of control, access, and equity surface. The concentration of biotechnological innovations and their pursuit by the multinational corporations, culminating in fears of seed monopolies, has consequences for the smallholder biopharma farmers. Such farmers are financially unable to adopt patented technologies (Stone, 2010). Such power inequalities between impoverished and rich countries can enhance the level of unwanted inequalities, thus defeating the aims of sustainable development.

The concern over the safety of genetically modified organisms (GMOs) stems mainly from the uncertain impact they can have on the environment and on human well-being. In the case of advanced GM crops, the public reception has been overwhelmingly positive and negative (Nicolia et al., 2014). However, from a scientific standpoint, their safety has not been contested. In the European Union, for instance, the public's disapproval, coupled with cultural restrictions, is puzzling in comparison to the US, Brazil, and India's adoption of a no-holds-barred GMO policy (Qaim 2020). Under these circumstances, rapid scientific and technological advancement, subject to fears, presents the dichotomies of ethics, trust, and culture. The gap between public and

scientific perceptions about GMOs in Europe and the region, comprising the US, Brazil, and India, is astonishing. The public in Europe has a much stronger opposition to the cultivation of GMOs compared to the US, Brazil, and India, which have advanced and embraced the cultivation of GMOs.

Unlike Europe, public opinion in the United States, Brazil, and India is largely more welcoming and favorable toward the development and biotechnology activities involving the manipulation of living organisms and their constituents. There is, however, an unarticulated dread about the prospect of the uncontrolled spread of genetically modified organisms and their potentially adverse impact on ecosystems and unrestricted gene flow, thereby disrupting the equilibrium of the ecosystem (Lynch and Vogel, 2001). Additionally, the control of genetically modified seeds under the Intellectual Property regime constitutes a serious threat to the cultural practice of seed-sharing, thereby forcing many farmers to question their self-respect and autonomy. The absence of undue private control over biotechnologies is a valuable instrument for advancing the Common Good, which is fully collaborative and equitable in all matters, including framework and public policy.

Future Prospects and Policy Implications

The foreseeable development of biotechnology in sustainable agriculture relies heavily on the fusion of precision farming, artificial intelligence systems, and genomics for the development of adaptive systems for farming driven by real-time intelligent data analytics. Open innovation and policy frameworks that allow cross-border collaboration, as well as innovation and knowledge sharing, are vital for the equitable distribution of the technology. Investment by the government and supranational organizations is imperative for the development of biosafety systems and

responsible farming infrastructure for capacity building among the small-scale farmers. Biotechnological innovations must be embedded into sustainability, ethics, and oversight in order for society to fully utilize their benefits in food security, environmental protection, and global agricultural inequity (Pretty, 2018; Qaim, 2020).

Conclusion

In the 21st century, biotechnological research focuses on achieving advancements in the field of agriculture. The use of molecular methods, including Genetic engineering, molecular breeding, and microbial engineering, has led to the development of crops with higher yields, greater resilience to environmental and biological stressors, and improved resource utilization. This, in turn, minimizes the use of agrochemicals, contributing to environmental protection and climate mitigation. The challenge remains that public scepticism, along with a lack of proper guidelines and policies, invariably leads to the constraining of the benefits that biotechnological practices can provide. The deep-seated transformative potential can only be accessed by practices that are ethical in approach, guided by principles of social integrity, economic justice, and ecological balance. Ethically managed and fairly distributed, biotechnology can bridge the gap between unsustainable productive agriculture and the more sustainable, productive biotechnological agriculture, meeting the global demands for food while sustaining life on Earth for future generations.

The prospects for agricultural biotechnology must ensure that the development of this field is still characterized by agricultural biotechnologies by building open agricultural dialogues between agricultural scientists, policymakers, producers, and consumers of food, so there is a shared understanding of the technology and concerns that are valid. All biotechnology research

must be open, and the rules as to the use of the technology must be equitable. This ensures biotechnology is always a widespread societal technology. At the end of the day, the progress made in this field of science will yield successful results if it increases the productivity of agricultural biotechnologies. Also, it will develop and expand the equitable global food system.

References

- Altieri, M. A., & Nicholls, C. I. (2020). Agroecology: A transdisciplinary, participatory and action-oriented approach. CRC Press. https://doi.org/10.1201/9780429495465
- Bhattacharyya, P. N., Sarmah, S. R., & Sharma, R. N. (2020). Microbial biotechnology and sustainable agriculture. *Biocatalysis and Agricultural Biotechnology*, 25, 101580. https://doi.org/10.1016/j.bcab.2020.101580
- Brookes, G., & Barfoot, P. (2018). Environmental impacts of genetically modified (GM) crop use 1996–2016: Impacts on pesticide use and carbon emissions. *GM Crops & Food*, 9(3), 109–139. https://doi.org/10.1080/21645698.2018.1476792
- Edgerton, M. D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel.

 *Plant Physiology, 149(1), 7–13. https://doi.org/10.1104/pp.108.130195
- Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., ... & Zaks, D. P. M. (2011). Solutions for a cultivated planet. *Nature*, 478(7369), 337–342. https://doi.org/10.1038/nature10452
- Gonsalves, D. (2014). The Hawaii papaya story: GMO saves an industry. *APSnet Features*. https://doi.org/10.1094/APSnetFeature-2014-05
- Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., & Venkataraman, G. (2018).
 CRISPR for crop improvement: An update review. Frontiers in Plant Science, 9, 985.
 https://doi.org/10.3389/fpls.2018.00985
- Lal, R. (2018). Soil health and carbon management. *Food and Energy Security*, 7(3), e00170. https://doi.org/10.1002/fes3.170

- Lynch, D., & Vogel, D. (2001). The regulation of GMOs in Europe and the United States: A case-study of contemporary European regulatory politics. *Council on Foreign Relations*. https://doi.org/10.2307/resrep05655
- Nicolia, A., Manzo, A., Veronesi, F., & Rosellini, D. (2014). An overview of the last 10 years of genetically engineered crop safety research. *Critical Reviews in Biotechnology, 34*(1), 77–88. https://doi.org/10.3109/07388551.2013.823595
- Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., ... & Drake,
 R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin
 A content. *Nature Biotechnology*, 23(4), 482–487. https://doi.org/10.1038/nbt1082
- Parry, M. A. J., Andralojc, P. J., Scales, J. C., Salvucci, M. E., Carmo-Silva, E., Alonso, H., & Whitney, S. M. (2013). Rubisco activity and regulation as targets for crop improvement. *Journal of Experimental Botany*, 64(3), 717–730. https://doi.org/10.1093/jxb/ers336
- Pretty, J. (2018). Sustainable intensification of agriculture: Greening the world's food economy.

 Routledge. https://doi.org/10.4324/9781315677466
- Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. *Applied Economic Perspectives and Policy*, 42(2), 129–150. https://doi.org/10.1002/aepp.13044
- Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. *PLoS ONE*, 8(6), e66428. https://doi.org/10.1371/journal.pone.0066428
- Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., ... & Smith, J. (2017).

 Sustainable intensification of agriculture for human prosperity and global sustainability.

 Ambio, 46(1), 4–17. https://doi.org/10.1007/s13280-016-0793-6

- Stone, G. D. (2010). The anthropology of genetically modified crops. *Annual Review of Anthropology*, 39(1), 381–400. https://doi.org/10.1146/annurev.anthro.012809.105058
- Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. *Science*, 327(5967), 818–822. https://doi.org/10.1126/science.1183700
- Wang, Y., Zhang, Y., Zhang, Q., Cui, Y., & Zhang, F. (2017). Overexpression of *OsDREB1C* increases drought and low-temperature tolerance in rice. *Frontiers in Plant Science*, 8, 110. https://doi.org/10.3389/fpls.2017.00110
- Wu, G., Chen, L., Zhang, H., & Zhang, B. (2019). Zmm28 gene overexpression improves maize yield. *Nature Biotechnology*, 37(4), 365–372. https://doi.org/10.1038/s41587-019-0062-8
- Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., ... & Xie, X. (2019). Enhanced salt tolerance of rice via CRISPR/Cas9-targeted mutagenesis of *OsRR22*. *Plant Biotechnology Journal*, *17*(3), 559–571. https://doi.org/10.1111/pbi.12981

Acknowledgements

I would like to express my sincere gratitude to Professor Dr. L.K Mohan Rao, Sidhartha Academy of higher education and his team for guidance, feedback and support on writing this paper.